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Summary 

Optimization techniques for pharmaceutical formulations based on second order orthogonal or rotatable designs as well as 
simplex lattice designs have been revisited. A digest of the procedures for optimizing pharmaceutical formulations is given. 

Introduction 

In addition to the art of formulation, tech- 
niques are available that can aid in the pharma- 
cist’s choice of fo~ulation components which 
optimize one or more product attributes (Bolton, 
1984; Bergman and Gittins, 1985) and recently 
these chemometric procedures have been applied 
successfully to pharmaceutical formulations. The 
experimental design based on surface-response 
model building is a well-known topic and, conse- 
quently, its foundations cannot be introduced here 
(Box et al., 1978; Box and Draper, 1987; Morgan 
et al., 1989; Morgan, 1991). However, a brief 
practical outline is given in the following 
(~n~arova and Kafarov, 1982). 

Correspondence to: A. Gustav0 Gonzalez, Department of Ana- 
lytical Chemistry University of Seville, E-41012 Seville, Spain. 

It is well known that traditional experimenta- 
tion involves a good deal of effort and time, 
especially where complex processes are evalu- 
ated. A very efficient way to enhance the value of 
research and to minimize the process develop- 
ment time is through designed experiments. 

Today experimental design and optimization 
are based on mathematical modelling - determin- 
istic or black-box models. Although the first seems 
to be philosophically the most attractive, unfortu- 
nately it often remains inapplicable as there is 
not always a known law to describe the studied 
phenomenon. This is the general case of pharma- 
ceutical formulations. A typical mathematical 
model is: 

Y =y(z,, Q,..-rzk) (1) 

where y is the dependent variable (response) and 
Zis are the independent variables (factors). They 
occupy what is called factor space and a plot of y 



on this space is called the response surface. By 
expanding the response function into a truncated 
Taylor’s series, the mathematical model is fre- 
quently a polynomial: 

(2) 

Therefore, we will suppose that the values of y 
vary when a certain numbers of experimentally 
controlled factors take on different fixed values 
called levels. 

In real processes there always are uncontrol- 
lable factors and the output produced varies at 
random. All these uncontrolled factors form the 
background noise or experimental error which is 
assumed to be normally distributed. This hypoth- 
esis seems acceptable remembering the central 
limit theorem taking into account that the back- 
ground noise is the outcome of summing the 
uncontrolled factors depending on various laws 
considered to be mutually independent. The use 
of multiple linear regression techniques yields 
sample regression coefficients, b,, bi, bsj and bi, 
which are the estimates of the true coefficients 
@sl. So, the estimated regression equation take 
the form: 

j=b(>+ Cbizi+ Cbijt,zj+ CbiiZf$. . . . (3) 

This regressive procedure is more straightforward 
than Yates’ algorithm for calculations of both 
main effects and interaction effects (Morgan et 
al., 1989). 

A full factorial design is one where all possible 
combinations of the factors at all levels involved 
in the experiment are used. Without replication 
and taking the same number n of levels for each 
factor, the number N of possible combinations 
(treatments or runs) to be performed during the 
experiment is given by N = nf, f being the num- 
ber of selected factors. 

Consider that our factor space has dimension 
f. For each factor zj (i = 1-f) we have IZ levels, 
the lowest of which is z,?’ and the highest of 
which is z,!“‘. So each Ievel of the factor zj 

belongs to the interval (z,vax, z,!“~“). Then we can 
define: 

the center of the interval, z:’ = (z,V + z,pin)/2 

(4) 

the length of the interval, 

AZ = (~:“aX-~,m~~),/2 (5) 

The point whose coordinates are <z:, zy, . . . zy> is 
called the center of design. 

In order to obtain a dimensionless factor space 
coordinate system, it is advisable to transform the 
zj coordinates into new dimensionless xj coordi- 
nates according to the coding equation: 

xj = ( zj - z,j),‘Az (6) 

In the dimensionless coordinate system, the up- 
per and lower levels are + 1 and - 1, respec- 
tively, and the center of design is now the point 
(0, 0,. . . 0). 

After coding, Eqns 2 and 3 may be rewritten 
as: 

y=po+ c&xi+ cpijxixj+ Cp;,xf+... 

(7) 

f=b,+ ~bin,+ zbijxixj+ zbi;x:+ . . . (8) 

Now, y, $, /?s and bs are referred to the new 
coordinate system. However, we continue with 
the same notation for avoiding an extra amount 
of new symbols, perhaps superfluous after this 
indication. So, in the remainder, any parameter 
will be referred to the coding factors x unless 
otherwise explicitly indicated. 

The aim of optimization is to determine those 
values <x,*, x2*, . . . , XT> that maximize the objec- 
tive function y = y(x,, x2,. . . , xr>. Two different 
methodologies (Bergman and Ciittins, 19851 may 
be applied for finding these optimum values. First, 
one may determine the general configuration of 
the response surface by evaluating y over a grid 
of different values according to an experimental 
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planning. Thereafter, a quadratic function is fit- 
ted over the relevant data points. Second, one 
may proceed to find the maximum of y without 
determining the general form of the response 
surface. Direct search methods such as simplex 
algorithm or steepest ascent hill-climbing algo- 
rithms are useful. An advantage of these later 
algorithms is that they find a maximum with 
relatively few observations; the drawback is that 
this maximum may only be a local, rather than a 
true maximum. 

So, chemometrically speaking two well sepa- 
rated generic designs may be performed: simulta- 
neous and sequential designs (Brerenton, 1990). 
The former involves a given set of experiments 
according to the established conditions. All these 
experiments need to be carried out. Then, the 
output response is fitted to the mathematical 
model. From the adjusted response surface, opti- 
mal conditions can be obtained. Conversely, in 
sequential designs the experiments are succes- 
sively performed until the desired optimum is 
reached by using direct search algorithms. The 
present survey deals only with simultaneous fac- 
torial designs. 

The most widely simultaneous designs of inter- 
est for pharmaceutical formulation development 
(Bolton, 1984; Bohidar and Peace, 1988) are the 
so-called composite designs and simplex-lattice 
designs. Both kinds of planning will be outlined 
in the following. 

Second-order composite designs 

As was indicated previously, considering that 
the surface region in the factor space close to the 
optimum is substantially non-linear, one can 
search for the optimum by adjusting the response 
surface by second-order non-linear polynomials. 
For this purpose the factors in the experimental 
designs should take at least three different val- 
ues, i.e., a three-level full factorial design is 
needed. The number L of coefficients of Eqn 8 
can be given by (Akhnazarova and Kafarov, 1982): 

J= (f+ l)(f+ 2)/2 (9) 

A 3f full factorial design involves a very great 
number of observations that exceeds considerably 

TABLE 1 

Number of experimental runs required for 3J factorial and 
central composite designs 

Number of Number of Three-level Composite 

factors coefficients factorial 3’ 2J+2f +1 

2 6 9 9 

3 10 21 I5 

4 15 81 25 

5 21 243 (Xl) “ 43 (27) ’ 

6 28 729 (243) ” 77 (45) h 

” Third fractional design. 
h Half fractional design. 

the number of coefficients to be estimated as 
indicated in Table 1. To alleviate such situations, 
Box and Wilson (1951) developed new designs, 
called second order composite designs, for fitting 
second-order polynomial response surfaces. The 
kernel of this design is a 2r design for f < 5 or a 
half replicate thereof at f > 5 (Akhnazarova and 
Kafarov, 1982). Let Nk = 2f. Now we add 2f star 
points positioned on the coordinate axes of facto- 
rial space: (*(Y, 0,. . . ,o>, (0, + a, 0,. . . ,o>, . . . 

(0, 0, . . . , f a>, where LY is the distance from the 
center point of the design to a star point. Let 
N, = 2f. Finally, we add N, extra points (gener- 
ally one) at the center of design (0, 0,. . . ,O>. 
Therefore, composites of complete factorials re- 
quire at least N, + N, + 1 = 2r + 2f + 1 runs. 
Composite designs can readily be transformed 
into orthogonal ones by an appropriate selection 
of the star arm or axial spacing (Y (Morgan et al., 
1989): 

CY= [I( Nt+N,+N,,)Nk]“2-N1,)/2]“2 (LO) 

Values for the axial spacing depending on the 
number of factors involved and the central runs 
are collected in Table 2. 

Orthogonality eliminates covariances between 
estimated pure second-order coefficients (6,,). 
Rather than using a criterion for individual esti- 
mated coefficients, it is possible to use criteria 
based on the joint effect of all coefficients. Box 
and Hunter (1957) have suggested that a second- 
order rotatable design should be considered an 
optimum. A design is said to be rotatable if its 



1.52 

TABLE 2 
V&es of a for orthogonal secund-order composite designs 

NO f. number of factors 
central 
points 

2 3 4 5” 

1 1.00 1.21 1.41 1.54 
2 1.08 1.28 1.47 1.61 
3 1.15 1.35 1.54 1.66 
4 1.21 1.41 1.61 1.72 
5 1.27 1.47 1.66 1.77 
6 1.32 1.52 1.72 1.82 
7 1.37 1.58 1.77 1.87 
8 1.41 1.62 1.82 1.91 
9 1.45 I .67 1.87 1.96 

10 1.50 1.71 1.91 2.00 

’ Half fractional design. 

variance-covariance matrix is invariant to the or- 
thogonal rotation of the coordinates. This means 
that the variance of the predicted responses de- 
pends oniy on the distance from the design center 
and not on the direction. The axial spacing in a 
rotatable design depends only on the number of 
kernel runs (Ark): 

ff = (Nrc)f/4 (111 

Table 3 lists the values of LY and NO for different 
values of f in uniform precision rotatable designs 
(Box and Hunter, 1957). 

The problem of fitting Eqn 8 becomes quite 
straightforward because in matrix form we have: 

J=XP (12) 

Thus, the column vector for the estimated 
coefficients is: 

B= (x=x)-‘XTY (131 

TABLE 3 

the estimation of the residual variance is: 

S2 = z(4;i-&)2/(N-t) res (14) 

and the coefficient variance-covariance matrix is: 

cov = (XTX)_is,2,, (15) 

It is assumed that XrX is n~nsingular and thus 
has an inverse. 

Consider, for instance, that a three-factor or- 
thogonal composite design is applied for optimiz- 
ing a dosage form and N total experiments 2” + 2 
x 3 + I = 15 have been performed. The vectors y 
and B (written in transpose form) will be: 

YT=:[Y,Yz...Y,sl 

B*=[bbbbh b b b b b 0 I 2 3 I1 22 33 12 13 23 ‘J 

and the data matrix X is: 

(16) 

(17) 

Each column represents the vatues of the factors 
in the following order: 1, x,, x2, x3, xf, xf, x3, 

Va1ue.r of a and NO for uniform precision rotatable second-order composite designs 

f, number of factors 

2 3 4 5 5” 6 6” 7 7a 

Kernel 22 2’ 24 2” 24 2h 25 27 ?h L 
1.41 1.68 2.00 2.38 2sJO 2.83 2.38 3.36 2.83 
s 6 7 10 6 15 9 21 14 

a Half fractional design. 
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x,nz, x,x3 and x2x3. The design matrix 11 is 
within X (columns Z-4). The first eight rows of D 
correspond to all possible values for the coded 
variables in the 23 full factorial design. The fol- 
lowing six rows are the star augmentations and 
the last row is the central run. The columns to 
the right of these three are derived by multiplying 
the levels corresponding to the two factors in- 
volved. 

Once the multiple regression calculations have 
been made, the optimum in y occurs for those 
X* values for which the derivatives dy/dx, (i = 
l-3) are simultaneously zero. If such a maximum 
exists x *, it can be found from: 

x* = -s-%/2 (19) 

where: 

X *5‘ = [ xfxz*x,*] 

ST = [ b,b,b,] 

b b,,/2 b,,/‘2 

s = b::/2 b,, b23/2 

h3/2 b/2 b33 

This formulation may easily extended to f fac- 
tors, although if f is equal to or greater than 5 it 
is more advisable to use fractional factorial de- 
signs (Philippe, 1967; Box et al., 1978; Morgan, 
1991). 

The multiple regression procedure may be eas- 
ily performed by using suitable software. Good 
statistical packages like STATGR~HICS* or 
CSS (which are available for IBM compatible 
personal computers) are useful for general pur- 
poses in experimental design, optimization, multi- 
variate analysis and a plethora of mathematical 
and statistical techniques. 

Once the regression has been carried out, a 
number of tests should be applied to check the 
validity of the regression model which are de- 
scribed in the following. 

Adequacy of the model 

Generally, the center point is repeated several 
times (A$,) during the course of the experiments. 

TABLE 4 

ANOVA of regresSon model for composite designs 

Source DF 

Regression 
Residual 

Pure error 
Lack of fit 

Total 

L-l 
N-L 
NO-l 
N-G-N,+1 
N-l 

The total number of experiments is N. The num- 
ber of regression coefficients is I. The break- 
down of the degrees of freedom CDF) for the 
analysis of variance (ANOVA) is collected in 
Table 4. The error mean square s,” is calculated 
from the N, central runs. To test the estimated 
regression equation for the goodness of the fit, 
use is made of the Fisher F test: 

F = s,“/sf (23) 

where si is the lack of fit mean square given by: 

fg2=(ST~S(N-L)-5,2(1VO-1)) 

/(N-d-&+1) (24) 

The regression model is considered adequate if 
F < F,~,,(N - L--NO + 1, N, - 1). An analysis of 
residuals would also be of interest for testing the 
adequacy of the model (Draper and Smith, 1981). 
The statistical packages STATGRAPHICS@ and 
CSS@ provide this possibility as well as other 
diagnostic techniques and the necessary plots in 
explicit outputs. 

Canonical and ridge analysis 

The stationary point x* is not necessarily a 
maximum (Van Ryswyk and Van Hecke, 19911, it 
could be a minimum or a saddle point on the 
fitted response surface. The canonical analysis 
consists of noting the signs of the eigenvalues Ai 
of the matrix S, i.e., the solutions of the f-th 
order polynomial provided by the determinantal 
equation: 

IS-h11 =o (2% 
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where Z is the identity matrix. The signs of the 
Ais reflect the character of the stationary point. If 
all Ajs < 0, the stationary point is a maximum. If 
all Ais > 0, the stationary point is a minimum. 
When the Ais differ in sign, the stationary point is 
a minimax or saddle point. A contour map or 
three-dimensional response surface is very illus- 
trative when possible (and may be easily obtained 
by using any of the statistical packages men- 
tioned). However, it is possible to ascertain some 
types of response surface without plotting the 
response surface by examining the pure second- 
order terms (Morgan, 1991). Consider, for in- 
stance, the surface y(x,, x1>. If b,, and b,, are 
positive and of approximately the same order of 
magnitude, the response surface will be a parabola 
opening upwards. The stationary point is a mini- 
mum. If both coefficients are negative and ap- 
proximately of the same order of magnitude, the 
response surface is a parabola opening down- 
wards, and the stationary point is a maximum. 
When both coefficients are negative with a slight 
difference in their magnitudes, the response sur- 
face becomes flatter. However, if they are both 
negative but very different a ridge response sur- 
face is likely. When one of the parameters is 
negative and the other positive and both are of 
about the same size, a saddle is being described. 
When the number of factors is greater than 2, a 
pseudo-three-dimensional plot of the response 
surface may be obtained keeping the remaining 
other factors at their constant optimal values. 

Signi~curzce test for regression coefficients 

The variance of each regression parameter bi 
is easily obtained from the diagonal elements of 
the variance covariance matrix COV = (XTX) s& 
(Morgan, 1991). Any statistical package gives this 
information. Once the variance s2 (bi) is known, 
the coefficients are tested for significance by Stu- 
dent’s t-test: 

ti=r Ibi//s(b,) (26) 

a coefficient is significant if ti > t,,,bj where v 
is the number of degrees of freedom of the resid- 

ual variance (Lacroix, 1962; Doerfel, 1987; Tallar- 
ida and Murray, 1987). The nonsignificant esti- 
mated coefficients are dropped from the regres- 
sion equation, and the remaining estimated coef- 
ficients are recalculated because they are interre- 
lated. 

Simplex-lattice designs 

One of the more popular methods of defining 
response surfaces and optimal regions for formu- 
lation characteristics is the application of simplex 
lattice designs. This term is unfortunate because 
it creates confusion between the simplex method 
for direct search optimization and the mixture 
design considered here, a very different method 
on all accounts. In order to avoid further confu- 
sion, we shall use the term Scheffe’s lattice 
(Akhnazarova and Kafarov, 1982) in connection 
with the mixture simplex lattice design. This class 
of design is particularly appropriate in formula- 
tion optimization procedures where the total 
quantity of the different ingredients under con- 
sideration must be constant (Bolton, 1984). Con- 
sider, for instance, that in a liquid formulation 
the active ingredient and solvent compose 90% of 
the product and the remaining 10% consists of 
preservatives, colouring agents and surfactant. 
Therefore, for determining optimal proportions 
we vary the concentrations of these three ingredi- 
ents with the restriction that their total concen- 
tration is 10%. In general, the Scheffe’s Iatticc 
designs are usually applied to formulation prob- 
lems in which a mixture of three or more compo- 
nents is to be investigated. The design is conve- 
niently represented by regular-sided figures. For 
example, a three-component system is repre- 
sented by an equilateral triangle in two dimen- 
sions. In such a case, for the sake of D-optimality 
(Akhnazarova and Kafarov, 19821, an incomplete 
third-degree polynomial response surface in terms 
of the proportions of the components namely, A, 
B and C is required for fitting the response: 

y = bAxA + h,x, + b,x,- + bABxAxB + b,,,x,x< 
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TABLE 5 

Coded lewls for a three-component Scheffek lattice design 

Run a xA xt3 xc 

1 1.0 0.0 0.0 

2 0.0 1.0 0.0 
3 0.0 0.0 1.0 

4 0.5 0.5 0.0 
5 0.5 0.0 0.5 
6 0.0 0.5 0.5 
7 0.33 0.33 0.33 

a Extra design test point are not included. 

where xA, xa and xc are the relative proportions 
of ingredients A, B and C fulfilling xA +x, +x, 
= 1. 

Accordingly, seven runs or formulations must 
be performed: (i) three formulations, one on each 
vertex A, B or C which represents the formula- 
tions with pure components; (ii> three formula- 
tions prepared with 50 : 50 mixtures of each pair 
of components AB, AC, BC; (iii) one formulation 
prepared with one-third of each component at 
the center of design. This design is depicted in 
Table 5. 

For systems comprising more components a 
single figure cannot conveniently be constructed, 
but can be readily treated nlathematically as an 
extension of the three-component system. 

In experimentation following Scheffe’s lattice 
designs there are no degrees of freedom to test 
the equation for the adequacy because the de- 
signs are saturated. in the three-component sys- 
tem there are seven runs for determining seven 
regression parameters (strictly speaking, the 
problem is reduced to solve a linear system of 
equations). Thus, to test the adequacy of the fit, 
it should be advisable to run one or more extra- 
design points called test points. Rigorous statisti- 
cal techniques may be applied (~hnazarova and 
Kafarov, 1982) but the following simple proce- 
dure is sufficient for testing purposes (Bolton, 
1984): Once the model equation is fitted to data, 
the results at the extra-design test points are 

predicted based on the equation and their agree- 
ment with the observed value assessed. If the 
agreement is close, we have increased faith in the 
predictive power of the response function. 

In the treatment discussed, the components 
comprise the entire mixture. A more common 
situation is one in which part of the formulation 
must remain fixed, such as the drug concentra- 
tion in a tablet. This is no cause for alarm be- 
cause we can restrict the treatment to those com- 
ponents which are varied and with adequate 
transformation, treat the data in the same way as 
above. For instance, if the components to be 
changed make up 60% of the total formulation 
ingredients, we can suitably transform the actual 
percentages of these components so that the 
transformed percentage is 100% or unity on a 
fractional scale. This is easily accomplished by 
coding the amount of ingredient used (Bolton, 
1984) in the following way: 

amount used - minimum 
actual fraction = 

maximum - minimum (27) 

Fo~ulatio~ parameters for optimization experi- 
ments 

As Bohidar and Peace (1988) have pointed 
out, the development of a pharmaceutical formu- 
lation and the associated processes usually in- 
voIve a number of independent and dependent 
variables. Independent variables (factors) may in- 
clude the level of a given ingredient or the mixing 
time for a given process stage. Excipient ingredi- 
ents are examples of independent variables. Sev- 
eral dependent variables (response values) can be 
considered. For example, in the case of tablets we 
have: 

disintegration time in min; tablet breaking ex- 
tent (hardness) in kg; dissolution (%) release in 
30 min and in 45 min; friability (%o) weight loss; 
thickness uniformity in % RSD (relative standard 
deviation); porosity in pm/g; mean pore diame- 
ter in pm; weight uniformity in % RSD; tablet 
breakage as the number of chipped tablets; gran- 
ulation mean diameter in ,um. 
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A pharmaceutical dosage form or drug deliv- 
ery system consist of the active ingredient as well 
as the excipient ingredients. The effects of these 
excipient ingredients on the response variable are 
of primary interest in formulation development 
(Bohidar, 1984). 

Worked examples 

In order to demonstrate the practicability and 
value of the concepts explained we have selected 
some practical examples. The data for the first 
and third examples were taken from Bolton 
(1984). The second example was inspired by the 
paper of Van Ryswyk and Van Hecke (1991). 

The data treatments have been performed ac- 
cording to the techniques explained here. The 
computations were carried out on an 80386 IBM 
compatible personal computer by using the CSS: 
STATISTICA statistical package from StatSoft. 

Example I 
A combination drug product is tested for ob- 

taining the dose of each drug which would result 
in an optimal response. The product contains two 
drugs, A and B. The experiment consists of for- 
mulating combinations containing each drug at 
two dose levels. The doses for A were 5 and 10 
mg, those for B being 50 and 100 mg. These 
levels were carefully selected to cover a range of 
doses which would include the appropriate dose 
to be chosen as the prime candidate for the final 
marketed product, which is a local anesthesic, 
The response (y) is the average time to anesthe- 
sia for 12 patients per group. 

First we will attempt to fit the response to the 
following equation: 

j = b, + b,x, + b,x, + b,,x; + b,,x,2 + b,,x,x, 

where x, and x2 are the coded levels for A and 
B. We need to calculate six regression parame- 
ters. An orthogonal second-order composite de- 
sign may be useful to solve it. Thus, a 2” full 
factorial kernel plus four star points and (at least) 
an additional central point are needed. The set of 

nine experiments is presented in the table shown 
below (the cy value is taken from Table 2): 

Coded 

XI 
-1 
-1 

-1 
0 
0 
0 

levels 

x2 

-1 

1 

-1 

1 
0 
0 

-1 
0 

Response 
Y 

9.7 
8.4 
8.2 
4.1 
7.5 
9.0 
3.8 
5.3 
4.8 

After multiple regression analysis, the parame- 
ters were: 

b, = 4.98 f 0.47 

b, = - 1.22 + 0.26 

b, = - 1.15 k 0.26 

b,, = 3.18 + 0.45 

b,, = - 0.52 rt 0.45 

b,, = - 0.70 rf 0.32 

Owing to the lack of replication (N, = 11, we will 
obtain the experimental F value as the ratio 
between the variance of the model and the resid- 
ual variance. The variance due to the model is 
calculated as follows. First, compute the sum of 
squares due to the model as the difference be- 
tween the total sum of squares (with respect to 
the mean) and the residual sum of squares. Then 
the calculated sum of squares is divided by the 
number of degrees of freedom (L- 1). Thus, the 
experimental value of F is 19.71, higher than the 
tabulated value F(5,3,95%) = 9. This indicates a 
fair adequacy of the fitted model. 

The coded levels where the response is opti- 
mal are calculated from Eqn 19 which yields the 
values X, = 0.065 and x2 = - 1.15. However, a 
canonical analysis of the corresponding matrix S 
gives two eigenvalues which differ in sign, i.e., at 



the chosen working levels, a saddle point is ob- 
tained. 

If a rn~rn~rn response is desired, say 5 min, 
various combinations of xt and x2 may satisfy 
the requirement, The ultimate choice wiff proba- 
bly depend on other factors, such as cost, toxicity, 
etc. 

On the other hand, by considering the signifi- 
cance of the regression coefficients according to 
the f-test, bz2 and b,, would be disregarded, 
yieiding a mare straightforward polynomial ex- 
pression. 

Exam& 2 
In order to illustrate bow to develop the re- 

sponse surface and use it to maximize the yield of 
a synthetic procedure, we wih now consider the 
production of a pharmacoXogically active com- 
pound by industrial chemical synthesis. The most 
important experimental variabtes are tempera- 
ture T, reactant mole ratio R and reaction time f, 
in a previous work, two fevel experiments were 
performed: 

t R T 
High level 210 min 17 115°C 

Luw Ievef 85 min 3 85°C 

Thus, the zero Ievel corresponds to 120 min, 10 
and 100°C. 

The prediction equation for optimizing the 
procedure is: 

where xi, x?, and x3 are the coded factor levels: 

n, = (r - ~20)/~ 

X2 = (R - X0)/7 

X3 = (T- 100)/15 

In this three-variable ~~~~~jrnent there are 3s 
total c~rnbi~a~~ons to explore. fn order to allevi- 
ate this, we wilf use a rotatable second-order 
composite design. According to Table 3, a kernel 
full factorial design of 2” experiments plus 2 x 3 
= 6 star points (with (Y = 1.68) and a 5-fold repli- 

cation of the central design point are needed. 
The yields obtained are compiled in the table 
shown beIow: 

Coded levels 

Xl 
-1 
-1 
-1 
-1 
1 
1 
3 
1 
1.68 
- I*68 
0 
0 
0 
Q 
0 
0 
0 
0 
0 

x2 x3 

-1 -1 

-I f 

1 -1. 

I 1 

-1 -1 
-1 1 
1 -1 
f f 
0 0 
0 0 
1.68 0 
- 1.68 0 
0 t.68 
ff - 1.68 
0 0 
0 0 
0 0 
0 0 
0 0 

yield in g 

Y 
neghgible 
0.03 
0.0”2 
0.03 
0.41 
0,2X 
0.53 
0.28 
0.41 
negligibIe 
0.33 
0.23 
0.16 
032 
0.66 
0.65 
0.66 
0,67 
0.66 

The regression parameters obtained were: 

6, = 0.661+ 0.014 

b, = 0.149 r_ 0.009 

b, = 0.028 1- 0.009 

b, = - 0.048 + 0.009 

b Ii = -0,166 + o,OW 

42 s -0.140 f 0.009 

b 33 = - 0.156 * 0.009 

b 12 = 0.021 f 0.0‘12 

b 13 = - 0.061 * 0,012 

b,, = - 0.009 f 0.012 
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According to the value of the tabulated t-test 
(t(9,95%) = 2.26) the parameters b,, and b,, 
would be neglected. 

From the replication of the central point (N,, 
= 51, the pure error variance s,’ = 5 x 10 was 
obtained. From this value and the residual vari- 
ance $es = 0.001076, the lack of fit variance was 
computed according to Eqn 24, giving ,si = 
0.001897. Thus, the experimental F value is 37.94, 
much greater than that tabulated, F(6,4,95%) = 
6.16, which indicates that the data provide a 
satisfactory fit to the model equation. 

The optimum point calculated from Eqn 19 
gives x, = 0.505, x2 = 0.146 and x3 = -0.257. 
The canonical analysis yields three negative 
eigenvalues which indicates that the optimal point 
computed is a true maximum. 

The uncoded values gives the optimal variables 
to be applied to the synthesis: a reaction time of 
165.5 min, a reaction temperature of 102.2”C and 
a reagent ratio of 8.2. 

Example 3 
The example presented below is an experiment 

in which a simplex design is used to obtain a 
formulation with optimal properties. The experi- 
ment was prompted by problems with tablet 
hardness for a large volume marketed product. 
The cause could be traced to three components 
of the tablets which we shall denote as ingredi- 
ents A, B and C. Together, these components 
consist of 25% of the original fo~ulation, or 75 
mg of the total tablet weight of 300 mg. A careful 
evaluation of the products ingredients indicates 
that the three components had to be present in 
an amount equal to at least 10 mg of each in 
order for the tablet to be satisfactorily com- 
pressed. Thus, the recommended simplex design 
to obtain a satisfactory tablet hardness consists of 
varying the three components with the constraint 
that the sum of the components must be 75 mg, 
and that each component be present in an amount 
equal to at least 10 mg. Accordingly, the mini- 
mum amount is 10 mg and the m~mum 55 mg. 
In order to apply the simplex polynomial in a 
suitable manner, the actual amounts used should 
be transformed into fractions such that the mini- 
mum corresponds to 0 and the maximum to 1. 

This is accomplished by using Eqn 27. The frac- 
tions x,, x2 and xj refer to ingredients A, B and 
C, respectively. 

The three-component simplex design is given 
in the following table. The response to be opti- 
mized is the hardness average of 20 tablets drawn 
at random from experimental batches. 

X 

1 
0 
0 

0.5 
0.5 
0 
0.333 

0.5 

fractions 
X X 

0 0 
1 0 
0 1 
0.5 0 
0 0.5 
0.5 0.5 
0.333 0.333 

0.25 0.25 
(check point) 

average hardness 
Y 

6.1 
7.5 
5.3 
6.6 
4.4 
6.9 
7.3 

7.2 

The fitted equation was: 

y^ = 6.1x, + 7.5~~ + 5.3x, - 0.8x,x, + 2.8x,x, 

+ 2.0x,x, + 15.24x,x,x, 

The predicted value for the check point was 
9 = 7.1, in good agreement with the experimental 
value of 7.2. Therefore, the equation satisfactorily 
predicts the tablet hardness. 
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